A Yawning Divide? Contagious Yawning and Empathy in Animals

A group of red-footed tortoises ran away (rather slowly) with the 2011 Ig Nobel Prize in physiology1, bringing to center stage the potential link between contagious yawning and empathy in animals. While the Ig Nobels are a tongue-in-cheek spoof of the Nobel Prizes, their purpose is not frivolous – they “honor achievements that first make people laugh, and then make them think. The prizes are intended to celebrate the unusual, honor the imaginative — and spur people’s interest in science, medicine, and technology.” Here’s the story of the tortoises’ claim to fame and what we know about contagious yawning in animals.

Tortoise yawning? I don’t think so!

It turns out that the underlying cause of contagious yawning has been something of a puzzle – why is it that when you see someone else yawn (or even hear a yawn or just think about yawning), you sometimes are overcome with the urge to yawn yourself? The most common hypotheses are that contagious yawning results either from empathy or from non-conscious social mimicry, the tendency to adopt a social partner’s postures, gestures and mannerisms. An alternative hypothesis, however, is that it may simply reflect a fixed action pattern, an innate or instinctual response to a stimulus (a triggering yawn).

No, really, go on - I'm listening... (photo: Peter Baumber)

And that’s where the red-footed tortoises lumber into the picture. Lead researcher Anna Wilkinson and her colleagues figured the tortoises would offer a good way of testing the fixed action pattern hypothesis, since they are known to yawn and respond to social stimuli, but are not believed to exhibit empathy or engage in non-conscious social mimicry.

The researchers worked very hard to induce contagious tortoise yawning, spending six months training one of them (Alexander, if you’re curious) to yawn whenever he saw a red square-shaped symbol, and then devising a series of tests to see whether six “observer” tortoises would yawn after seeing Alexander yawn. Initially, the observers were presented with three scenarios: one in which they watched Alexander giving one of his patented yawns, another in which they watched a non-yawning tortoise (Alexander?), and a third in which they simply viewed Alexander’s red square. A second experiment mirrored the first, except this time the observers watched Alexander yawn multiple times. Finally, they went to the movies, seeing clips of real tortoise yawns, fake yawns and an empty background.

And the results? Nothing, nada, zilch. The tortoises simply didn’t yawn more frequently after seeing another tortoise yawn; no contagious yawning whatsoever. This spectacular display of non-yawning in tortoises led the researchers to “suggest that contagious yawning is not simply the result of a fixed action pattern and releaser stimulus …. We suggest that contagious yawning may be controlled through social processes such as nonconscious mimicry or empathy….” Naturally, international acclaim ensued.

Apes and Monkeys and Dogs, Oh My!

So, which animals do demonstrate contagious yawning? Well, as with other cognitive realms, our views of contagious yawning have followed “AnimalWise’s Rule”: first we believed it to be an exclusively human behavior, then we observed it in chimpanzees, then we saw it in monkeys, next in dogs, now … hmm … Taste it, fur-face, I have opposable thumbs!  Ok, I lied, that’s not a real rule; I just made it up.

Here’s a run-down on what we actually know about contagious yawning in non-humans:

Chimpanzees

The phenomenon was first demonstrated in chimpanzees in 2004 when a research team led by James Anderson of the University of Stirling reported2 on a small study in which six adult female chimps watched video scenes of other chimps who were either yawning naturally or, alternatively, displaying open-mouthed facial expressions that weren’t yawns. Two of the observers (33%) yawned significantly more often in response to the yawn videos and none of them yawned more frequently in response to the open-mouth control videos, a response rate only slightly lower than that in humans watching comparable videos. In 2009, Matthew Campbell and colleagues from the Yerkes National Primate Research Center (YNPRC) expanded on these findings, reporting3 that, much like humans responding to on-screen yawns by Pixar characters, a group of 24 chimps yawned significantly more often after watching 3D computer animations of yawning chimps than after watching animations of chimps displaying non-yawn mouth movements. Finally, Matthew Campbell and Frans de Waal of the YNPRC reported4 this year on an experiment lending empirical support to the hypothesis that contagious yawning stems from empathy. Campbell and de Waal found that, consistent with studies showing that humans demonstrate greater empathy towards others they view as being similar, chimps yawned significantly more frequently in response to videos of familiar chimps yawning than they did to either videos of unfamiliar chimps yawning or videos of chimps (regardless of familiarity) who were at rest.

Monkeys

The first study supporting contagious yawning in non-ape primates was published5 in 2006 by University of Stirling researchers Annika Paukner and James Anderson, who had 22 stumptail macaques watch video clips of other macaques either yawning or making non-yawn facial movements. Although the macaques yawned significantly more in response to yawn tapes than to non-yawn tapes, the researchers noted that the macaques engaged in more self-directed scratching (a tension-relieving behavior) while watching the yawn tapes, making it difficult to differentiate between actual contagious yawning and the release of stress perhaps brought on by the yawn tapes. The case for non-hominid contagious yawning was bolstered in 2009, though, when Elisabetta Palagi of Pisa University and her colleagues published6 a study in which they recorded and reviewed over 3,200 baboon yawning displays (all occurring in the absence of stressful events or behavior). They not only found clear evidence of contagious yawning among adult baboons, but also discovered that females (but not males) tended to match the type of yawning display (baboons make different facial expressions when yawning) that had triggered their own yawn, and that the degree of contagiousness correlated with social closeness, thus supporting an empathy-basis for yawn contagion and anticipating the results of 2011 chimpanzee experiment described above.

Dogs

Lastly, in 2008 Ramiro Joly-Macheroni and colleagues from the University of London reported7 on an experimental first on multiple fronts: yawn contagion in a non-primate species and the first demonstration of possible contagious yawning across different species. In their study, 29 dogs observed an unfamiliar human either yawning or making non-yawning mouth movements, with 21 dogs yawning in response to the yawning human and not one yawning in response to the human who displayed the non-yawning control behavior.

Future Directions

I know that if the Internet were allowed to vote, researchers would spend much of their waking hours considering YouTube videos of impossibly cute kittens yawning, but I want to take this opportunity to call for a full and serious investigation into the concerning link between contagious duck wing flapping and odd French Canadian music:

_____

ResearchBlogging.org1Wilkinson, A., Sebanz, N., Mandl, I., & Huber, L. (2011). No evidence of contagious yawning in the red-footed tortoise Geochelone carbonaria. Current Zoology, 57(4), 477-484.

2Anderson, J., Myowa-Yamakoshi, M., & Matsuzawa, T. (2004). Contagious yawning in chimpanzees Proceedings of the Royal Society B: Biological Sciences, 271 (Suppl_6) DOI: 10.1098/rsbl.2004.0224.

3Campbell, M., Carter, J., Proctor, D., Eisenberg, M., & de Waal, F. (2009). Computer animations stimulate contagious yawning in chimpanzees Proceedings of the Royal Society B: Biological Sciences, 276 (1676), 4255-4259 DOI: 10.1098/rspb.2009.1087.

4Campbell, M., & de Waal, F. (2011). Ingroup-Outgroup Bias in Contagious Yawning by Chimpanzees Supports Link to Empathy PLoS ONE, 6 (4) DOI: 10.1371/journal.pone.0018283.

5Paukner, A., & Anderson, J. (2006). Video-induced yawning in stumptail macaques (Macaca arctoides) Biology Letters, 2 (1), 36-38 DOI: 10.1098/rsbl.2005.0411.

6Palagi, E., Leone, A., Mancini, G., & Ferrari, P. (2009). Contagious yawning in gelada baboons as a possible expression of empathy Proceedings of the National Academy of Sciences, 106 (46), 19262-19267 DOI: 10.1073/pnas.0910891106.

7Joly-Mascheroni, R., Senju, A., & Shepherd, A. (2008). Dogs catch human yawns Biology Letters, 4 (5), 446-448 DOI: 10.1098/rsbl.2008.0333.

Grief in Animals

I’ve been thinking about grief lately. It can be so overpowering – the dull ache of emptiness, the stabbing pain of loss, and the prism of sadness that transforms the bright colors of everyday life into a harsh and alien landscape. Consumed by grief, we are alone; yet somehow our solitary suffering can end up strengthening the bonds we have with others we know and love.

I’ve also been thinking about grief in animals, and what we know about it. When our cat Puggsley died, our younger Siamese, Moose, felt the full impact of the loss. The two had always been close, perhaps tied together by their mutual skepticism over Wednesday, our third cat and official people-pleaser. Moose and Puggsley were constant companions, playmates, napping buddies, and a rather frightening pair of mischief makers. When Puggsley became old and frail, he would curl up stiffly by the fireplace, and Moose would bed down near him. At the very end, Moose was right there, tenderly licking Puggsley as he was overcome by a seizure. And after he was gone, she mourned – she was lost without her friend, and had little appetite or energy for weeks. She never bedded down by the fireplace again. How do I know this was grief? Well, it was obvious; I just know.

Puggsley and Moose

But what do we really know about grief in animals – that is, in a scientific sense? Not particularly much, it turns out.

We are (mostly) beyond the era in which animals were considered thoughtless automatons, incapable of feeling pain and other emotions. Still, there have been relatively few formal studies of how animals experience grief.

In a way, this isn’t so surprising. For one, opportunities to systematically observe grieving behavior in the wild are rare and, if you think about it, it’s difficult to design ethical studies intended to cause social animals to grieve in captive settings. Also, what specifically do you test for and how do you quantify and evaluate an inherently subjective experience like grief? It’s tough enough to evaluate this sort of thing in humans, who can respond to questionnaires and use language to express their emotions….

As a result, most the scientific literature about grief in animals is anecdotal or observational in nature, and in many of these accounts it’s clear that otherwise objective researchers have struggled to come up with scientific ways of reporting what, in the end, are their own reactions, what they just know.

Although the record is sparse everywhere, there have been some recent papers on grief in primates. Brian Switek, who writes the Laelaps blog for Wired Magazine, has written a terrific piece on this research in his “What Death Means to Primates” posting (I strongly encourage you to check out Laelaps; it’s one of the best blogs out there on paleontology, evolution, and the history of science).

As Brian recounts in detail, studies have documented chimpanzee and other primate mothers who have continued to carry dead infants, sometimes for weeks and even to the point of mummification. In one of the studies1, researchers described two chimpanzee mothers (Jire and Vuavua) in Bossou, Guinea, who carried their dead babies (aged 1.2 years old and 2.6 years old, respectively) after they had died in a respiratory epidemic, grooming them regularly, chasing away flies, and carrying them during all travel. The researchers pondered:

An obvious and fascinating question concerns the extent to which Jire and Vuavua “understood” that their offspring were dead. In many ways they treated the corpses as live infants, particularly in the initial phase following death. Nevertheless they may well have been aware that the bodies were inanimate, consequently adopting carrying techniques never normally employed with healthy young (although mothers of handicapped young have also been known to respond appropriately).

In another study2, James Anderson, Alasdair Gillies and Louise Lock reported on the peaceful death of an older chimpanzee, Pansy, who lived in a safari park. They videotaped the reactions of Pansy’s companions and observed a number of behaviors that they found to be comparable to human bereavement. The degree to which the researchers sought out human counterparts to the chimps’ behavior is evident from the following description in their paper:

During Pansy’s final days the others were quiet and attentive to her, and they altered their nesting arrangements (respect, care, anticipatory grief). When Pansy died they appeared to test for signs of life by closely inspecting her mouth and manipulating her limbs (test for pulse or breath). Shortly afterwards, the adult male attacked the dead female, possibly attempting to rouse her (attempted resuscitation); attacks may also have expressed anger or frustration (denial, feelings of anger towards the deceased). The adult daughter remained near the mother’s corpse throughout the night (night-time vigil), while Blossom groomed Chippy for an extraordinary amount of time (consolation, social support). All three chimpanzees changed posture frequently during the night (disturbed sleep). They removed straw from Pansy’s body the next morning (cleaning the body). For weeks post-death, the survivors remained lethargic and quiet, and they ate less than normal (grief, mourning). They avoided sleeping on the deathbed platform for several days (leaving objects or places associated with the deceased untouched).

With this focus, it’s not surprising that they concluded by proposing that “chimpanzees’ awareness of death has been underestimated.”

Also, more anecdotally, many were moved by the apparent grief captured in this poignant National Geographic photo of chimpanzees at a rehabilitation center peering at the lifeless body of Dorothy, their long-time companion, being taken to her burial:

Chimpanzee burial (National Geographic, photo: Monica Szczupider)

There has also been some research into the behavior of elephants towards the dead and dying. In one study3, Iain Douglas-Hamilton, Shivani Bhalla, George Wittemyer and Fritz Vollrath reported on the death of Eleanor, a matriarch elephant in the Samburu National Reserve in Kenya. They were able to use GPS technology to track the movements of elephants in Eleanor’s family and in other families as they reacted to her collapse and subsequent death. The researchers found that Eleanor was visited frequently by both related and unrelated elephants, concluding:

Combined with earlier work and the data of other scientists it leads to the conclusion that elephants have a generalized response to suffering and death of conspecifics and that this is not restricted to kin. It is an example of how elephants and humans may share emotions, such as compassion, and have an awareness and interest about death.

Grace visiting Eleanor's body (photo: Douglas-Hamilton, et al)

In another paper4, Karen McComb, Lucy Baker and Cynthia Moss described experiments in which they assessed elephants’ strong interest in and sometimes dramatic reactions to elephant bones and tusks. After systematically presenting elephants in Amboseli National Park in Kenya with different combinations of elephant and other animal skulls, ivory and pieces of wood, the researchers found that the elephants were significantly more interested in elephant skulls and tusks than they were in the skulls of other animals or in the wood, but that they did not demonstrate a special affinity to the skulls or ivory of deceased relatives. The following video provides a nice glimpse into the way in which elephants seem to be fascinated by elephant bones and tusks:

Several reports have also documented cetaceans reacting with apparent grief. In one report5, for example, Mark Simmonds described an incident in which two male orcas appeared to grieve over the death of a female orca thought to be their mother. For years, the two males had spent all their time swimming with this female. After her death, the males were seen swimming together but apart from all other orcas for a day or two, repeatedly visiting the places that their mother had passed in her last few days. In another instance, Robin Baird of the Cascadia Research Collective reported seeing two orcas, a mother and adult son, swimming with a dead calf in the Puget Sound, with the mother balancing the calf on her rostrum or carrying it on top of her head and occasionally lifting it out of the water, and both adults diving deep to recover the baby when it began sinking.

Dolphin and calf (Tethys Research)

Scientists at the Tethys Research Institute related a similar occurrence off the coast of Greece, where a mother bottlenose dolphin was seen interacting with a dead newborn calf. Their description vividly underscores the difficulties in evaluating these sorts of situations from a scientific perspective:

Whilst researchers must avoid being driven by their own feelings and make arbitrary interpretations, in this case it was quite clear that the mother was mourning. She seemed to be unable to accept the death, and was behaving as if there was any hope of rescuing her calf. She lifted the little corpse above the surface, in an apparent late attempt to let the calf breath. She also pushed the calf underwater, perhaps hoping that the baby could dive again. These behaviours were repeated over and over again, and sometimes frantically, during two days of observation.

The mother did never separate from her calf. From the boat, researchers and volunteers could hear heartbreaking cries while she touched her offspring with the rostrum and pectoral fins. Witnessing such desperate behaviour was a shocking experience for those on board the research boat.

Finally, Marc Bekoff (he of the Yellow Snow fame) has written an eloquent article that includes many additional anecdotes regarding animal grief in his Psychology Today column.

Ultimately, there is much we will never be able to understand regarding how animals experience the world. We can trace commonalities between human and other animal brain structures and neural pathways associated with emotional experiences, and we can try to add more systematic observations to our collection of behavioral anecdotes, but in some fundamental ways the animal mind (and, for that matter, the mind of other humans) will always be cloaked in private experience, inaccessible to us. Moreover, as some of the accounts in this post have illustrated, our attempts at understanding animal emotions are inevitably colored by our own human experiences. We can know human grief, but how can we understand what it means to experience chimp grief, or elephant grief, or orca grief?

Nevertheless, just because we cannot fully comprehend what we see in other animals, that does not mean that grief in animals does not exist or that animals cannot lead rich emotional lives. Indeed, what we do see is a pattern that makes it increasing clear that death can impact other animals profoundly.

How do I know this? Just ask Moose, Puggsley or Wednesday – I just know.

_____

ResearchBlogging.org1Biro, D., Humle, T., Koops, K., Sousa, C., Hayashi, M., & Matsuzawa, T. (2010). Chimpanzee mothers at Bossou, Guinea carry the mummified remains of their dead infants Current Biology, 20 (8) DOI: 10.1016/j.cub.2010.02.031.

2Anderson, J., Gillies, A., & Lock, L. (2010). Pan thanatology Current Biology, 20 (8) DOI: 10.1016/j.cub.2010.02.010.

3Douglas-Hamilton, I., Bhalla, S., Wittemyer, G., & Vollrath, F. (2006). Behavioural reactions of elephants towards a dying and deceased matriarch Applied Animal Behaviour Science, 100 (1-2), 87-102 DOI: 10.1016/j.applanim.2006.04.014.

4McComb, K., Baker, L., & Moss, C. (2006). African elephants show high levels of interest in the skulls and ivory of their own species Biology Letters, 2 (1), 26-28 DOI: 10.1098/rsbl.2005.0400.

5Simmonds, M. (2006). Into the brains of whales Applied Animal Behaviour Science, 100 (1-2), 103-116 DOI: 10.1016/j.applanim.2006.04.015.

Be Kind to Cattle

The AnimalWise Soapbox

In a more ideal world, cattle would be free to lead lives consistent with their ancestry as nomadic grazers covering wide ranges. Of course, this isn’t a perfect world, particularly for the cows and other farmyard animals whose entire existence we have repurposed into the provision of meat and dairy products.

Without wading too deeply into the morass of moral issues raised by how we humans have transformed the environment and put other animals to work to serve our needs, it’s pretty clear that we have assumed a responsibility for the well-being of these animals who depend on us for everything.

Now, jumping down from the soapbox, what’s interesting is that, even if we were to disavow any ethical obligation to our bovine helpers, research continues to underscore how much it is in our own selfish interest to treat them with kindness and care.

A Cow by Any Other Name…

For example, one recent study1 that enjoyed some popular press attention found that named cows were better milk providers. That’s right, cows with names.

Uh oh, here comes what's-his-name...

In this study, researchers led by Catherine Bertenshaw and Peter Rowlinson of Newcastle University sent a detailed survey to every fourth dairy farm in England and Wales (1,000 in total), asking, farmers a number of questions regarding their attitudes toward cattle, how they managed dairy herds, and their perceptions of cows’ emotional and cognitive capacities. The response rate was 56% (52% after weeding out respondents who had recently ceased farming), with 90% coming from experienced stock managers who had worked with cattle for more than 15 years.

As noted above, cows don’t appear to enjoy toiling away in obscurity. On 46% of the surveyed farms, cows are called by name, and these cows produced an average of 258 liters more of milk per 10 month lactation period than did their anonymous peers (7938 liters versus 7680 liters). Moreover, on farms where the stock manager thought it important to know every individual animal, heifers had a 197 liter higher average milk yield over their first lactation than on farms where the manager thought it wasn’t important (6931 liters versus 6734 liters).

Does this mean that cows recognize their own names and appreciate it when they hear themselves being singled out?

While this is possible, the more likely explanation is that farmers who name and individually recognize dairy cows are more likely to treat them well. Bertenshaw and Rowlinson cite previous research finding attitude to be a reliable predictor of a person’s behavior around animals and that those having a positive attitude towards cows are “likely to handle animals patiently, to believe that regular positive contact is important, and to show positive behaviors towards the cows.”

Overall, the survey results indicate that – at least from the farmers’ perspective – there is a relatively positive relationship between dairy cows and stock persons on UK farms. Ninety percent of the respondents thought that cows had “feelings,” only 21% believed that dairy cattle were fearful of humans, and 78% thought cows were intelligent. (It would be interesting to see what percent think that their human coworkers were intelligent.) Also, on a somewhat reassuring note, 44% gave “love of cows” as a reason why they chose to work with cows.

Obviously, this is a subjective survey from one viewpoint (no word on when the cows will be receiving their questionnaires), but it provides important insight into the importance of our nurturing our relationships with other animals … and lessons that will serve us well when the Revolution comes (hilarious Dana Lyons video below):

♫  ♫  We will fight for bovine freedom, and hold our large heads high!   ♪  ♫  ♪

_____

1Bertenshaw, C., & Rowlinson, P. (2009). Exploring Stock Managers’ Perceptions of the Human–Animal Relationship on Dairy Farms and an Association with Milk Production Anthrozoos: A Multidisciplinary Journal of The Interactions of People & Animals, 22 (1), 59-69 DOI: 10.2752/175303708X390473.

Reconciling and Reassuring Ravens

Welcome to the elaborate, conflict-laden world of raven (Corvus corax) social dynamics!

Expanding on prior research demonstrating that ravens sometimes console fellow ravens who’ve been victims of aggression, researchers have now found that ravens who’ve been in conflicts often reconcile with their former opponents, the first time this behavior has been seen in birds.

Reconciling Ravens

In a study published this year in PloS ONE1, University of Vienna biologists Orlaith Fraser and Thomas Bugnyar found that reconciliation behavior does indeed occur between ravens who’ve had conflicts, particularly when the participants share a valuable relationship. While this sort of post-conflict kiss-and-make-up behavior is believed to play an important role in reducing stress and repairing relationships in primates and certain other mammals, it hadn’t been found in prior studies of birds, leading researchers to hypothesize that perhaps birds use different strategies to maintain social harmony or that reconciliation isn’t so important for birds, as their most important relationships are their pair bonds with mates, where they may be able to avoid significant conflicts in the first place.

Will we fight again? Nevermore! (photo credit: Audubon Guides)

Fraser and Bugnyar studied seven captive sub-adult ravens (who were too young to have formed pair bonds) for 13 months, measuring their behavior after a total of 197 aggressive conflicts (defined as incidents involving hitting, chasing or forced retreat). They then documented “affiliative behavior” (friendly interactions involving contact sitting, preening, beak-to-beak or beak-to-body touching) after each conflict, and compared it to the behavior occurring during neutral periods when no aggression had taken place.

They found that reconciliation (friendly contact occurring within 10 minutes of the end of the conflict) occurred after 37 of 197 conflicts and, in a significant majority of the cases, friendly interactions took place more quickly after a conflict than during the matched control period. Moreover, birds who were related or in “high value relationships” (pairs who had previously been observed to preen or sit in contact with one another) were more likely to reconcile. Interestingly, neither the sex-combination of the opponents nor the intensity of the conflict (measured by whether the birds hit each other and how many times a bird was chased or forced to retreat) impacted the likelihood of reconciliation.

The researchers did note that the behavior of ravens in the wild might differ from those in captivity, and that additional study would be needed to determine whether other factors, such as a history of food sharing, might also impact reconciliation behavior.

This study is significant in that it suggests that, through a convergent process and despite very different evolutionary histories, ravens have developed conflict resolution strategies that are similar to those employed by primates, reconciling with each other to preserve valuable relationships and reduce the chance of further discord.

Reassuring Ravens

This 2011 reconciliation research follows closely on the heels of a comparably-structured study2 that Fraser and Bugnyar published in 2010, also in PLoS ONE, establishing that ravens may possess a sense of empathy (yet another trait once thought to belong to humans alone, at least before evidence of empathy began turning up in primates and other animals).

In the 2010 study, Fraser and Bugnyar attempted to measure whether “bystander” ravens (those who’d witnessed but not been involved in an aggressive conflict) would console the conflict victim through “affiliations” (the same sort of friendly behavior – contact sitting, preening, beak-to-beak or beak-to-body touching – as was measured in the more recent “reconciliation” study).

Don't worry, you're much better looking than he is... (photo credit: pdphoto.org)

This time, they studied 11 sub-adult and two adult ravens raised in captivity, reviewing behavior after a total of 152 conflicts and in matching control periods and finding that both spontaneous and solicited (that is, initiated by the victim) bystander affiliations were likely to occur after conflicts.

More specifically, they found that unsolicited bystander affiliations were more likely to occur after more intense conflicts as well as when the ravens were related or shared valuable relationships, factors which suggested to the researchers that the affiliations served a distress-alleviating, or consoling, function. Also, the bystanders generally had stronger ties to the victims than to the aggressors, leading the researchers to conclude that it was unlikely that the bystanders were either acting as proxies for the aggressor to try to repair relationship between the combatants or trying to protect themselves from redirected attacks from the victims.

Based on these findings, Fraser and Bugnyar concluded that the best explanation for the bystanders’ unsolicited friendly behavior was that they were acting to console and alleviate the distress of the victims. The summarized the significance of this as follows:

Consolation is a particularly interesting interaction because it implies a cognitively demanding degree of empathy, known in humans as ‘sympathetic concern’. In order for a bystander to console a victim, they must first recognize that the victim is distressed and then act appropriately to alleviate that distress, requiring a sensitivity to the emotional needs of others previously attributed only to humans.

While the researchers noted some caveats, including the fact that study didn’t attempt to record vocalizations and that research on ravens in the wild was still necessary, they concluded that “the findings of this study … suggest that ravens may be responsive to the emotional needs of others.”

So, before you leave, here’s a multiple choice test regarding the moral of this story:

  1. Ravens are super smart, just like crows, nutcrackers, magpies and other corvids.
  2. We keep finding more and more ways in which other animals are able to do “uniquely human” things.
  3. If you plan on having an argument with a raven, you should make sure you bring all your raven buddies with you for support.
  4. All of the above.

_____

1Fraser, O., & Bugnyar, T. (2011). Ravens Reconcile after Aggressive Conflicts with Valuable Partners PLoS ONE, 6 (3) DOI: 10.1371/journal.pone.0018118.

2Fraser, O., & Bugnyar, T. (2010). Do Ravens Show Consolation? Responses to Distressed Others PLoS ONE, 5 (5) DOI: 10.1371/journal.pone.0010605.

Elephant Negotiations

What better way to kick off a blog about animal wisdom than with a shout out to the ponderous and pulchritudinous pachyderm? Rest assured that there will be many more posts about these lovably large animals, but for now I wanted to call attention to a recent article in the UK Daily Mailthat provides some fascinating color regarding elephants’ complex social systems.

African Elephants (photo credit: World Wildlife Federation)

The article, reporting on nearly 40 years of continuous study by Cynthia Moss and her team of researchers at the Amboseli National Park in Kenya, describes the many ways in which elephants engage in sophisticated communications through body language and sound. Read the article and check out the handy graphics for insight into how elephants flirt (hey, big guy…), greet each other by entwining trunks, invite others to play, show empathy by wincing at each other’s pain, and even squabble over directions:

Negotiations over directions often begin with a common signal known as the ‘let’s go’ rumble. The elephants then engage in lengthy exchanges until a consensus is reached and the herd moves off in the chosen direction. Phyllis Lee, of Stirling University, Scotland – co-editor of The Amboseli Elephants, a new book revealing the research – said elephants can take up to an hour discussing which way to go. ‘It’s wonderful to watch and a real process of negotiation,’ she said.

The one quibble I have with the article is its assertion that the elephants’ social system is “remarkably similar to that of humans.” As we sit here in California facing another budgetary impasse and look forward to similar fun to be had in Washington, D.C., this summer, it seems to me that we should invite in the elephants to show us humans a “real process of negotiation” that leads to a consensus in an hour. Of course, the politicians might then need to haul out their shovels and spend another hour or so cleaning up, but that’s another story.

_____

1The Mail Online, “Not such a Dumbo: How elephants flirt, argue and have feelings just like humans,” June 6, 2011.